An efficient method for solving highly anisotropic elliptic equations

نویسندگان

  • Edward Santilli
  • Alberto Scotti
چکیده

Solving elliptic PDEs in more than one dimension can be a computationally expensive task. For some applications characterised by a high degree of anisotropy in the coefficients of the elliptic operator, such that the term with the highest derivative in one direction is much larger than the terms in the remaining directions, the discretized elliptic operator often has a very large condition number – taking the solution even further out of reach using traditional methods. This paper will demonstrate a solution method for such ill-behaved problems. The high condition number of the D-dimensional discretized elliptic operator will be exploited to split the problem into a series of well-behaved one and (D − 1)dimensional elliptic problems. This solution technique can be used alone on sufficiently coarse grids, or in conjunction with standard iterative methods, such as Conjugate Gradient, to substantially reduce the number of iterations needed to solve the problem to a specified accuracy. The solution is formulated analytically for a generic anisotropic problem using arbitrary coordinates, hopefully bringing this method into the scope of a wide variety of applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Energy Stable Schemes with Spectral Discretization in Space for Anisotropic Cahn–hilliard Systems

We develop in this paper efficient and robust numerical methods for solving anisotropic Cahn–Hilliard systems. We construct energy stable schemes for the time discretization of the highly nonlinear anisotropic Cahn-Hilliard systems by using a stabilization technique. At each time step, these schemes lead to a sequence of linear coupled elliptic equations with constant coefficients which can be ...

متن کامل

A Local Strong form Meshless Method for Solving 2D time-Dependent Schrödinger Equations

This paper deals with the numerical solutions of the 2D time dependent Schr¨odinger equations by using a local strong form meshless method. The time variable is discretized by a finite difference scheme. Then, in the resultant elliptic type PDEs, special variable is discretized with a local radial basis function (RBF) methods for which the PDE operator is also imposed in the local matrices. Des...

متن کامل

New Method for Large Deflection Analysis of an Elliptic Plate Weakened by an Eccentric Circular Hole

The bending analysis of moderately thick elliptic plates weakened by an eccentric circular hole has been investigated in this article. The nonlinear governing equations have been presented by considering the von-Karman assumptions and the first-order shear deformation theory in cylindrical coordinates system. Semi-analytical polynomial method (SAPM) which had been presented by the author before...

متن کامل

A numerical method for solving nonlinear partial differential equations based on Sinc-Galerkin method

In this paper, we consider two dimensional nonlinear elliptic equations of the form $ -{rm div}(a(u,nabla u)) = f $. Then, in order to solve these equations on rectangular domains, we propose a numerical method based on Sinc-Galerkin method. Finally, the presented method is tested on some examples. Numerical results show the accuracy and reliability of the proposed method.

متن کامل

Petascale elliptic solvers for anisotropic PDEs on GPU clusters

Memory bound applications such as solvers for large sparse systems of equations remain a challenge for GPUs. Fast solvers should be based on numerically efficient algorithms and implemented such that global memory access is minimised. To solve systems with up to one trillion (10) unknowns the code has to make efficient use of several million individual processor cores on large GPU clusters. We ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 230  شماره 

صفحات  -

تاریخ انتشار 2011